Copied to
clipboard

G = C62.84D6order 432 = 24·33

32nd non-split extension by C62 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: C62.84D6, (C3xC6).47D12, C3:2(D6:Dic3), C6.20(S3xDic3), (C32xC6).50D4, C32:10(D6:C4), C33:13(C22:C4), C2.1(C33:9D4), C6.40(C3:D12), C6.10(D6:S3), C3:2(C6.D12), C6.21(C6.D6), (C3xC62).14C22, C32:7(C6.D4), C22.3(C32:4D6), (C6xC3:S3):3C4, (C2xC6).60S32, (C3xC6).56(C4xS3), (C6xC3:Dic3):4C2, (C2xC3:Dic3):9S3, (C2xC3:S3):4Dic3, (C22xC3:S3).5S3, C2.4(C33:9(C2xC4)), (C3xC6).68(C3:D4), (C32xC6).47(C2xC4), (C3xC6).43(C2xDic3), (C2xC6xC3:S3).3C2, SmallGroup(432,461)

Series: Derived Chief Lower central Upper central

C1C32xC6 — C62.84D6
C1C3C32C33C32xC6C3xC62C2xC6xC3:S3 — C62.84D6
C33C32xC6 — C62.84D6
C1C22

Generators and relations for C62.84D6
 G = < a,b,c,d | a6=b6=1, c6=a3, d2=a3b3, ab=ba, cac-1=a-1, ad=da, cbc-1=dbd-1=b-1, dcd-1=b3c5 >

Subgroups: 952 in 210 conjugacy classes, 51 normal (15 characteristic)
C1, C2, C2, C2, C3, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2xC4, C23, C32, C32, C32, Dic3, C12, D6, C2xC6, C2xC6, C2xC6, C22:C4, C3xS3, C3:S3, C3xC6, C3xC6, C3xC6, C2xDic3, C2xC12, C22xS3, C22xC6, C33, C3xDic3, C3:Dic3, S3xC6, C2xC3:S3, C2xC3:S3, C62, C62, C62, D6:C4, C6.D4, C3xC3:S3, C32xC6, C32xC6, C6xDic3, C2xC3:Dic3, S3xC2xC6, C22xC3:S3, C3xC3:Dic3, C6xC3:S3, C6xC3:S3, C3xC62, D6:Dic3, C6.D12, C6xC3:Dic3, C2xC6xC3:S3, C62.84D6
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, Dic3, D6, C22:C4, C4xS3, D12, C2xDic3, C3:D4, S32, D6:C4, C6.D4, S3xDic3, C6.D6, D6:S3, C3:D12, C32:4D6, D6:Dic3, C6.D12, C33:9(C2xC4), C33:9D4, C62.84D6

Smallest permutation representation of C62.84D6
On 48 points
Generators in S48
(1 3 5 7 9 11)(2 12 10 8 6 4)(13 15 17 19 21 23)(14 24 22 20 18 16)(25 27 29 31 33 35)(26 36 34 32 30 28)(37 47 45 43 41 39)(38 40 42 44 46 48)
(1 15 5 19 9 23)(2 24 10 20 6 16)(3 17 7 21 11 13)(4 14 12 22 8 18)(25 42 33 38 29 46)(26 47 30 39 34 43)(27 44 35 40 31 48)(28 37 32 41 36 45)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 39 13 32)(2 31 14 38)(3 37 15 30)(4 29 16 48)(5 47 17 28)(6 27 18 46)(7 45 19 26)(8 25 20 44)(9 43 21 36)(10 35 22 42)(11 41 23 34)(12 33 24 40)

G:=sub<Sym(48)| (1,3,5,7,9,11)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,24,22,20,18,16)(25,27,29,31,33,35)(26,36,34,32,30,28)(37,47,45,43,41,39)(38,40,42,44,46,48), (1,15,5,19,9,23)(2,24,10,20,6,16)(3,17,7,21,11,13)(4,14,12,22,8,18)(25,42,33,38,29,46)(26,47,30,39,34,43)(27,44,35,40,31,48)(28,37,32,41,36,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,39,13,32)(2,31,14,38)(3,37,15,30)(4,29,16,48)(5,47,17,28)(6,27,18,46)(7,45,19,26)(8,25,20,44)(9,43,21,36)(10,35,22,42)(11,41,23,34)(12,33,24,40)>;

G:=Group( (1,3,5,7,9,11)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,24,22,20,18,16)(25,27,29,31,33,35)(26,36,34,32,30,28)(37,47,45,43,41,39)(38,40,42,44,46,48), (1,15,5,19,9,23)(2,24,10,20,6,16)(3,17,7,21,11,13)(4,14,12,22,8,18)(25,42,33,38,29,46)(26,47,30,39,34,43)(27,44,35,40,31,48)(28,37,32,41,36,45), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,39,13,32)(2,31,14,38)(3,37,15,30)(4,29,16,48)(5,47,17,28)(6,27,18,46)(7,45,19,26)(8,25,20,44)(9,43,21,36)(10,35,22,42)(11,41,23,34)(12,33,24,40) );

G=PermutationGroup([[(1,3,5,7,9,11),(2,12,10,8,6,4),(13,15,17,19,21,23),(14,24,22,20,18,16),(25,27,29,31,33,35),(26,36,34,32,30,28),(37,47,45,43,41,39),(38,40,42,44,46,48)], [(1,15,5,19,9,23),(2,24,10,20,6,16),(3,17,7,21,11,13),(4,14,12,22,8,18),(25,42,33,38,29,46),(26,47,30,39,34,43),(27,44,35,40,31,48),(28,37,32,41,36,45)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,39,13,32),(2,31,14,38),(3,37,15,30),(4,29,16,48),(5,47,17,28),(6,27,18,46),(7,45,19,26),(8,25,20,44),(9,43,21,36),(10,35,22,42),(11,41,23,34),(12,33,24,40)]])

54 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D···3H4A4B4C4D6A···6I6J···6X6Y6Z6AA6AB12A···12H
order1222223333···344446···66···6666612···12
size111118182224···4181818182···24···41818181818···18

54 irreducible representations

dim11112222222244444444
type++++++-+++-+-+
imageC1C2C2C4S3S3D4Dic3D6C4xS3D12C3:D4S32S3xDic3C6.D6D6:S3C3:D12C32:4D6C33:9(C2xC4)C33:9D4
kernelC62.84D6C6xC3:Dic3C2xC6xC3:S3C6xC3:S3C2xC3:Dic3C22xC3:S3C32xC6C2xC3:S3C62C3xC6C3xC6C3xC6C2xC6C6C6C6C6C22C2C2
# reps12142122344832124224

Matrix representation of C62.84D6 in GL6(F13)

1200000
0120000
000100
00121200
000010
000001
,
1210000
1200000
001000
000100
0000120
0000012
,
080000
800000
0012000
001100
00001111
000029
,
050000
500000
0012000
0001200
000029
00001111

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,0,0,0,0,11,2,0,0,0,0,11,9],[0,5,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,2,11,0,0,0,0,9,11] >;

C62.84D6 in GAP, Magma, Sage, TeX

C_6^2._{84}D_6
% in TeX

G:=Group("C6^2.84D6");
// GroupNames label

G:=SmallGroup(432,461);
// by ID

G=gap.SmallGroup(432,461);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,36,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=a^3,d^2=a^3*b^3,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^3*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<